Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556838

RESUMO

INTRODUCTION: Alternative splicing of the human MAPT gene generates six brain-specific TAU isoforms. Imbalances in the TAU isoform ratio can lead to neurodegenerative diseases, underscoring the need for precise control over TAU isoform balance. Tauopathies, characterized by intracellular aggregates of hyperphosphorylated TAU, exhibit extensive neurodegeneration and can be classified by the TAU isoforms present in pathological accumulations. METHODS: A comprehensive review of TAU and related dementia syndromes literature was conducted using PubMed, Google Scholar, and preprint server. RESULTS: While TAU is recognized as key driver of neurodegeneration in specific tauopathies, the contribution of the isoforms to neuronal function and disease development remains largely elusive. DISCUSSION: In this review we describe the role of TAU isoforms in health and disease, and stress the importance of comprehending and studying TAU isoforms in both, physiological and pathological context, in order to develop targeted therapeutic interventions for TAU-associated diseases. HIGHLIGHTS: MAPT splicing is tightly regulated during neuronal maturation and throughout life. TAU isoform expression is development-, cell-type and brain region specific. The contribution of TAU to neurodegeneration might be isoform-specific. Ineffective TAU-based therapies highlight the need for specific targeting strategies.

2.
Methods Mol Biol ; 2754: 499-506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512685

RESUMO

Primary murine neurons have proved to be an essential tool for the general investigation of neuronal polarity, polarized Tau distribution, and Tau-based neuronal dysfunction in disease paradigms. However, mature primary neurons are notoriously difficult to transfect with non-viral approaches and are very sensitive to cytoskeletal manipulation and imaging. Furthermore, standard non-viral transfection techniques require the use of a supportive glial monolayer or high-density cultures, both of which interfere with microscopy. Here we provide a simple non-viral liposome-based transfection method that enables transfection of Tau in low levels comparable to endogenous Tau. This allows the investigation of, for example, distribution and trafficking of Tau, without affecting other cytoskeleton-based parameters such as microtubule density or microtubule-based transport. Using this protocol, we achieve a profound transfection efficiency but avoid high overexpression rates. Importantly, this transfection method can be applied to neurons at different ages and is also suitable for very old cultures (up to 18 days in vitro). In addition, the protocol can be used in cultures without glial support and at suitable cell densities for microscopy-based single cell analysis. In sum, this protocol has proven a reliable tool suitable for most microscopy-based approaches in our laboratory.


Assuntos
Neurônios , Proteínas tau , Camundongos , Animais , Proteínas tau/genética , Proteínas tau/análise , Citoesqueleto/química , Microtúbulos/química , Neuroglia , Células Cultivadas
3.
Methods Mol Biol ; 2754: 533-549, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512688

RESUMO

Tau pathology is a major hallmark of many neurodegenerative diseases summarized under the term tauopathies. In most of these disorders,  such as Alzheimer's disease, the neuronal axonal microtubule-binding Tau protein becomes mislocalized to the somatodendritic compartment. In human disease, this missorting of Tau is accompanied by an abnormally high phosphorylation state of the Tau protein, and several downstream pathological consequences (e.g., loss of microtubules, degradation of postsynaptic spines, impaired synaptic transmission, neuronal death). While some mechanisms of Tau sorting, missorting, and associated pathologies have been addressed in rodent models, few studies have addressed human Tau in physiological disease-relevant human neurons. Thus, suitable human-derived in vitro models are necessary. This protocol provides a simple step-by-step protocol for generating homogeneous cultures of cortical glutamatergic neurons using an engineered Ngn2 transgene-carrying WTC11 iPSC line. We further demonstrate strategies to improve neuronal maturity, that is, synapse formation, Tau isoform expression, and neuronal activity by co-culturing hiPSC-derived glutamatergic neurons with mouse-derived astrocytes. Finally, we describe a simple protocol for high-efficiency lentiviral transduction of hiPSC-derived neurons at almost all stages of differentiation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas tau , Camundongos , Animais , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Neurônios/metabolismo , Axônios/metabolismo , Diferenciação Celular , Células Cultivadas
4.
Methods Mol Biol ; 2754: 507-519, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512686

RESUMO

Primary murine neurons are a well-established tool for investigating Tau in the context of neuronal development and neurodegeneration. However, culturing primary neurons is usually time-consuming and requires multiple feeding steps, media exchanges, proprietary media supplements, and/or preparation of complex media. Here, we describe (i) a relatively cheap and easy cell culture procedure for the cultivation of forebrain neurons from embryonic mice (E13.5) based on a commercially available neuronal supplement (NS21), (ii) a protocol for the cultivation of hippocampal and cortical neurons from postnatal (P0-P3) animals, and (iii) basic fixation and immunofluorescence techniques for the staining of neuronal markers and endogenous Tau. We demonstrate a staining technique, which minimizes antibody consumption and allows for fast and convenient processing of samples for immunofluorescence microscopy of endogenous Tau in primary neurons. We also provide a protocol that enables cryopreservation of fixed cells for years without measurable loss of Tau signal. In sum, we provide reliable protocols enabling microscopy-based studies of Tau in primary murine neurons.


Assuntos
Corantes , Proteínas tau , Camundongos , Animais , Proteínas tau/metabolismo , Neurônios/metabolismo , Técnicas de Cultura de Células/métodos , Hipocampo , Células Cultivadas
6.
Sci Rep ; 13(1): 3785, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882473

RESUMO

Spatial hearing remains one of the major challenges for bilateral cochlear implant (biCI) users, and early deaf patients in particular are often completely insensitive to interaural time differences (ITDs) delivered through biCIs. One popular hypothesis is that this may be due to a lack of early binaural experience. However, we have recently shown that neonatally deafened rats fitted with biCIs in adulthood quickly learn to discriminate ITDs as well as their normal hearing litter mates, and perform an order of magnitude better than human biCI users. Our unique behaving biCI rat model allows us to investigate other possible limiting factors of prosthetic binaural hearing, such as the effect of stimulus pulse rate and envelope shape. Previous work has indicated that ITD sensitivity may decline substantially at the high pulse rates often used in clinical practice. We therefore measured behavioral ITD thresholds in neonatally deafened, adult implanted biCI rats to pulse trains of 50, 300, 900 and 1800 pulses per second (pps), with either rectangular or Hanning window envelopes. Our rats exhibited very high sensitivity to ITDs at pulse rates up to 900 pps for both envelope shapes, similar to those in common clinical use. However, ITD sensitivity declined to near zero at 1800 pps, for both Hanning and rectangular windowed pulse trains. Current clinical cochlear implant (CI) processors are often set to pulse rates ≥ 900 pps, but ITD sensitivity in human CI listeners has been reported to decline sharply above ~ 300 pps. Our results suggest that the relatively poor ITD sensitivity seen at > 300 pps in human CI users may not reflect the hard upper limit of biCI ITD performance in the mammalian auditory pathway. Perhaps with training or better CI strategies good binaural hearing may be achievable at pulse rates high enough to allow good sampling of speech envelopes while delivering usable ITDs.


Assuntos
Implante Coclear , Implantes Cocleares , Adulto , Humanos , Animais , Ratos , Frequência Cardíaca , Taquicardia , Vias Auditivas , Mamíferos
7.
Biosens Bioelectron ; 199: 113859, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34911002

RESUMO

Cochlear implants are the most successful neural prostheses worldwide and routinely restore sensorineural hearing loss by direct electrical stimulation of the auditory nerve. Enhancing this standard implant by chemical sensor functionality opens up new possibilities, ranging from access to the biochemical microenvironment of the implanted electrode array to the long-term study of the electrode status. We developed an electrochemical method to turn the platinum stimulation microelectrodes of cochlear implants into electrochemical sensors. The electrodes showed excellent and stable chemical sensor properties, as demonstrated by in vitro characterizations with combined amperometric and active potentiometric dissolved oxygen and hydrogen peroxide measurements. Linear, stable and highly reproducible sensor responses within the relevant concentration ranges with negligible offset were shown. This approach was successfully applied in vivo in an animal model. Intracochlear oxygen dynamics in rats upon breathing pure oxygen were reproducibly and precisely measured in real-time from the perilymph. At the same time, correct implant placement and its functionality was verified by measurements of electrically evoked auditory brainstem responses with clearly distinguishable peaks. Acute measurements indicated no adverse influence of electrical stimulation on electrochemical measurements and vice versa. Our work is ground-breaking towards advanced implant functionality, future implant lifetime monitoring, and implant-life-long in situ investigation of electrode degradation in cochlear implant patients.


Assuntos
Técnicas Biossensoriais , Implante Coclear , Implantes Cocleares , Animais , Nervo Coclear , Estimulação Elétrica , Humanos , Oxigênio , Ratos
8.
J Food Prot ; 81(4): 606-613, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29528705

RESUMO

Inoculation methods in pathogen inactivation studies ideally represent conditions that might occur in real-world scenarios. Surface contamination in or on low-moisture foods affects Salmonella thermal resistance, which is critically important for process validation applications. The objective of this study was to quantify the effect of inoculation protocol on the thermal resistance of Salmonella Enteritidis PT 30 in fabricated low-moisture foods. Almond meal, almond butter, wheat meal, wheat flour, and date paste were inoculated via prefabrication and postfabrication protocols. In the prefabrication protocol, kernels and fruits were surface inoculated and equilibrated to a target water activity (aw) (0.40 for almond and wheat products, 0.45 for date products) before fabricating meal, butter, flour, or paste and then reequilibrating the samples to the target aw. In the postfabrication protocol, meal, butter, flour, and paste were fabricated before inoculation and equilibration. All inoculated and equilibrated samples were subjected to isothermal treatment (80°C), pulled sequentially during processing, cooled, serially diluted, and plated to enumerate survivors. Log-linear and Weibull-type models were fit to the Salmonella survivor data and were compared via the corrected Akaike information criterion. Pre- and postfabrication protocols resulted in significant differences ( P < 0.05) in Salmonella thermal resistance in all products. Overall, the thermal resistance of Salmonella Enteritidis PT 30 in almond products was greater ( P < 0.05) than in wheat products, which was also greater ( P < 0.05) than in date paste. Additionally, Salmonella was more thermally resistant in almond products and date paste when inoculated pre- rather than postfabrication; however, the opposite was true for wheat products. These results indicate that the means of inoculation can significantly affect thermal resistance of Salmonella in low-moisture foods.


Assuntos
Contaminação de Alimentos/análise , Microbiologia de Alimentos , Salmonella enteritidis , Termotolerância , Contagem de Colônia Microbiana , Manipulação de Alimentos , Temperatura Alta , Phoeniceae/microbiologia , Prunus dulcis/microbiologia , Salmonella enteritidis/fisiologia , Triticum/microbiologia
9.
J Food Prot ; 79(11): 1833-1839, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-28221914

RESUMO

Limited prior research has shown that inoculation methods affect thermal resistance of Salmonella in low-moisture foods; however, these effects and their repeatability have not been systematically quantified. Consequently, method variability across studies limits utility of individual data sets and cross-study comparisons. Therefore, the objective was to evaluate the effects of inoculation methodologies on stability and thermal resistance of Salmonella in a low-moisture food (wheat flour), and the repeatability of those results, based on data generated by two independent laboratories. The experimental design consisted of a cross-laboratory comparison, both conducting isothermal Salmonella inactivation studies in wheat flour (~0.45 water activity, 80°C), utilizing five different inoculation methods: (i) broth-based liquid inoculum, (ii) lawn-based liquid inoculum, (iii) lawn-based pelletized inoculum, (iv) direct harvest of lawn culture with wheat flour, and (v) fomite transfer of a lawn culture. Inoculated wheat flour was equilibrated ~5 days to ~0.45 water activity and then was subjected to isothermal treatment (80°C) in aluminum test cells. Results indicated that inoculation method impacted repeatability, population stability, and inactivation kinetics (α = 0.05), regardless of laboratory. Salmonella inoculated with the broth-based liquid inoculum method and the fomite transfer of a lawn culture method exhibited instability during equilibration. Lawn-based cultures resulted in stable populations prior to thermal treatment; however, the method using direct harvest of lawn culture with wheat flour yielded different D-values across the laboratories (α = 0.05), which was attributed to larger potential impact of operator variability. The lawn-based liquid inoculum and the lawn-based pelletized inoculum methods yielded stable inoculation levels and repeatable D-values (~250 and ~285 s, respectively). Also, inoculation level (3 to 8 log CFU/g) did not affect D-values (using the lawn-based liquid inoculum method). Overall, the results demonstrate that inoculation methods significantly affect Salmonella population kinetics and subsequent interpretation of thermal inactivation data for low-moisture foods.


Assuntos
Farinha , Triticum , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Salmonella/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...